Autonomous UAV Navigation Using Reinforcement Learning

نویسندگان

  • Huy X. Pham
  • Hung M. La
  • David Feil-Seifer
  • Luan V. Nguyen
چکیده

Unmanned aerial vehicles (UAV) are commonly used for missions in unknown environments, where an exact mathematical model of the environment may not be available. This paper provides a framework for using reinforcement learning to allow the UAV to navigate successfully in such environments. We conducted our simulation and real implementation to show how the UAVs can successfully learn to navigate through an unknown environment. Technical aspects regarding to applying reinforcement learning algorithm to a UAV system and UAV flight control were also addressed. This will enable continuing research using a UAV with learning capabilities in more important applications, such as wildfire monitoring, or search and rescue missions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autonomous Quadrotor Landing using Deep Reinforcement Learning

Landing an unmanned aerial vehicle (UAV) on a ground marker is an open problem despite the effort of the research community. Previous attempts mostly focused on the analysis of hand-crafted geometric features and the use of external sensors in order to allow the vehicle to approach the land-pad. In this article, we propose a method based on deep reinforcement learning that only requires low-res...

متن کامل

Autonomous UAV Navigation with Domain Adaptation

Autonomous navigation has become an increasingly popular machine learning application. Recent advances in deep learning have also brought huge improvements to autonomous navigation. However, prior outdoor autonomous navigation methods depended on various expensive sensors or expensive and sometimes erroneously labeled real data. In this paper, we propose an autonomous navigation method that doe...

متن کامل

Co-evolutionary perception-based reinforcement learning for sensor allocation in autonomous vehicles

In this paper we study the problem of sensor allocation in Unmanned Aerial Vehicles (UAVs). Each UAV uses perception-based rules for generalizing decision strategy across similar states and reinforcement learning for adapting these rules to the uncertain, dynamic environment. A big challenge for reinforcement learning algorithms in this problem is that UAVs need to learn two complementary polic...

متن کامل

Reinforcement Learning: Mdp Applied to Autonomous Navigation

The problem of autonomous vehicle navigation between lanes, around obstacles and towards a short term goal can be solved using Reinforcement Learning. The multi-lane road ahead of a vehicle may be represented by a Markov Decision Process (MDP) grid-world containing positive and negative rewards, allowing for practical computation of an optimal path using either value iteration (VI) or policy it...

متن کامل

Autonomous Navigation in Partially Observable Environments Using Hierarchical Q-Learning

A self-learning adaptive flight control design allows reliable and effective operation of flight vehicles in a complex environment. Reinforcement Learning provides a model-free, adaptive, and effective process for optimal control and navigation. This paper presents a new and systematic approach combining Q-learning and hierarchical reinforcement learning with additional connecting Q-value funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.05086  شماره 

صفحات  -

تاریخ انتشار 2018